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Photovoltaic electricity is a rapidly growing renewable energy source and will ultimately assume

a major role in global energy production. The cost of solar-generated electricity is typically compared to

electricity produced by traditional sources with a levelized cost of energy (LCOE) calculation.

Generally, LCOE is treated as a definite number and the assumptions lying beneath that result are

rarely reported or even understood. Here we shed light on some of the key assumptions and offer a new

approach to calculating LCOE for photovoltaics based on input parameter distributions feeding

a Monte Carlo simulation. In this framework, the influence of assumptions and confidence intervals

becomes clear.
Introduction

Solar energy is the most abundant and therefore one of the most

promising renewable energy options for large-scale global elec-

tricity production. The photovoltaics (PV) industry is expanding

at a phenomenal pace, with grid-tied installations in the U.S.

growing from about 50 MW in 2004 to a projected 1 GW this

year; globally installations may exceed 14 GW. Despite this

growth, PV still represents only a tiny fraction of the overall

worldwide electricity production, and the primary reason for

this is that the cost of generation from PV is typically higher

than that from traditional sources such as coal and natural gas

power plants, though as PV manufacturing capacity continues
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Broader context

The fairest comparison between energy supply technologies is the

lifetime energy production and lifetime costs associated with a syst

and we specifically expose a number of assumptions that underlie

regarding both costs and energy production are not known with ce

and a Monte Carlo simulation that statistically selects from these di

distribution that captures the uncertainty associated with the inputs.

projected costs for a solar energy project, giving enhanced guidanc

This journal is ª The Royal Society of Chemistry 2011
to expand, market penetration will follow. For PV to attain

deep market penetration, its costs must be comparable to those

from fossil fuels, though it should be noted that there are

substantial hidden costs associated with fossil fuels that are

generally not accounted for such as pollution and climate

change.1,2

The retail cost of conventional electricity is rising while the

cost of solar electricity is dropping, so wide-scale grid parity is

likely at some point in the future. Improvements to existing

solar technologies and the development and commercialization

of second- and third-generation technologies are the source of

much of the cost savings, though decreases in the balance of

systems and power electronics costs are also contributing. There

are numerous groups of stakeholders interested in tracking

these developments, with quantitative accuracy carrying enor-

mous value. Investors need to know their expected return on

investment, regulators and policy makers help define the

economics of energy production and require reliable informa-

tion, funding agents need a means to analyze proposed tech-

nology development,3 and technology developers want to

understand how they will compete relative to other technolo-

gies. One needs a method to fairly compare energy costs

produced by different means, and the levelized cost of energy

(LCOE) is intended to be just this.
levelized cost of energy (LCOE), which takes into account the

em. Here we examine the LCOE for utility-scale photovoltaics,

such a calculation. In reality, many of the input parameters

rtainty. By using probability distributions for these parameters

stributions over and over again, one can build an LCOE output

Such an LCOE distribution provides far greater insight into the

e to stakeholders.
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Levelized cost of energy

LCOE can be thought of as the price at which energy must be

sold to break even over the lifetime of the technology. It yields

a net present value in terms of, for example, cents per kilowatt-

hour. This is an assessment of the economic lifetime energy cost

and lifetime energy production (eqn (1)) and can be applied to

essentially any energy technology. For computing the financial

costs the equations can be embellished to take into account not

only system costs, but also factors such as financing, insurance,

maintenance, and different types of depreciation schedules.

LCOE ¼ Lifecycle cost

Lifetime energy production
(1)

SunPower Corporation recently produced a whitepaper that

details a simplified LCOE equation for utility-scale PV.4 It can be

represented as:

LCOE ¼
Project costþ

PN

n¼1

AO

ð1þDRÞn �
RV

ð1þDRÞn
XN

n¼1

Initial kWh� ð1� SDRÞn

ð1þDRÞn
(2)

where AO is the annual operations cost, DR is the discount rate,

RV is the residual value, SDR is the system degradation rate, and

N is the number of years the system is in operation. Eqn (2)

computes the economic LCOE. This formulation can be modi-

fied to include financial considerations such as taxes, subsidies,

and other complexities. An equation taking some of these addi-

tional factors into account was recently reported:5
LCOE ¼
PCI �

XN

n¼1

DEPþ INT

ð1þDRÞn TRþ
XN

n¼1

LP

ð1þDRÞn þ
XN

n¼1

AO

ð1þDRÞnð1� TRÞ � RV

ð1þDRÞn

XN

n¼1

Initial kWh� ð1� SDRÞn

ð1þDRÞn
(3)
where PCI is the project cost minus any investment tax credit or

grant, DEP is depreciation, INT is interest paid, LP is loan

payment, and TR is the tax rate.

More importantly, though, one must recognize that each of

these parameters is associated with a set of assumptions. In many

cases, there is sufficient uncertainty revolving around these

assumptions to render the output only a very crude estimate.

Quantification of that uncertainty is currently absent from

essentially all LCOE calculations.

For the PV industry, LCOE analysis failed most spectacularly

in Spain in 2008, when too many projects were developed using

best case assumptions regarding panel failure rates and other

performance factors. A more thorough analysis of the uncer-

tainties associated with these assumptions could have prevented

substantial losses.
Solar advisor model

In an effort to overcome some of the challenges associated with

performing a reliable LCOE calculation, the National Renew-

able Energy Laboratory, Sandia National Laboratory and the

U.S. Department of Energy have developed a system
Energy Environ. Sci.
performance model incorporating financing options ranging

from residential to utility scale named the Solar Advisor Model

(SAM).6 This software is among the most broadly used to

analyze solar technologies for specific locations and provides

users with the capability to probe the relative influence of input

parameters on both the energy production and financial aspects.

It represents the best tool publicly available today for the

industry to examine the financial feasibility of a solar project.

In the SAM analysis, utility-scale LCOE is calculated based on

the required revenues over the project life and is described as

‘‘real’’ or ‘‘nominal’’ according to:

real LCOE ¼

XN

n¼1

Rn

ð1þDRnominalÞn

XN

n¼1

Qn

ð1þDRrealÞn
(4)

nominal LCOE ¼

XN

n¼1

Rn

ð1þDRnominalÞn

XN

n¼1

Qn

ð1þDRnominalÞn
(5)

where Qn is the electricity generated in year n, Rn is the required

revenue from electricity sales in year n, DRreal is the real discount

rate (no inflation), and DRnominal is the nominal discount rate

(with inflation). Hidden within Q and R are numerous factors

such as degradation rate, weather data, price escalation rate, etc.
As with all calculations built around LCOE, however, SAM

results in a specific number and is calculated in such a way that it

inherently incorporates a set of assumptions. (The most recent

releases of SAM have incorporated the ability to provide

a sensitivity analysis of one or more parametric variables, which

begins to address this issue.) Without a detailed understanding of

these underlying assumptions, their distribution profiles, and

a sensitivity analysis of them, a single resulting number may give

an unfounded confidence in the certainty of the result.

In this article, we will shed light on the assumptions that go

into an LCOE calculation for utility-scale PV. When the

dramatic effect of assumptions is revealed, it becomes clear that

a single number from an LCOE calculation does not capture the

uncertainty associated with the economic and financial implica-

tions of a PV project.
Assumptions associated with energy production

Accurately predicting the energy output of a PV system over its

lifetime is enormously challenging. It is apparent that simply

using the vendor’s reported conversion efficiency under standard

test conditions and the average annual solar insolation at a given
This journal is ª The Royal Society of Chemistry 2011
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location is insufficient. Below we describe an improved approach

to estimating energy production based on input distributions

rather than single numbers. In each case we outline the rationale

behind our distributions, which again relies on a series of

assumptions. The key is to use the best available data, but more

importantly to understand the source of the data and the

uncertainty associated with it.

In this study we consider a 20 MW utility-scale PV system at

three diverse domestic locations; namely, Sacramento, CA,

Chicago, IL, and Boston, MA. Although other types of systems

are readily analyzed by our model, here we specifically consider

a 1-axis tracking PV system with flat-plate collector and an axis

tilt equal to the latitude of the location. Using the total stated

system capacity and an assumed performance of 197 peak watts

per square meter, the effective area of this PV system is

103,627 m2. Based on surveys of utility-scale PV systems7 and

optimistic cost trends for the year 2012, the total capital cost of

this system is estimated at $54 million, which corresponds to

$2.70/W (65% modules, 35% balance of systems). Subsidies

provided by the federal government represent as much as 30% of

the total installation cost. The annual insurance cost, which is

conservatively assumed to be 0.5% of the installation cost, equals

$270,000. In this analysis, we assume a 2.5% inflation rate, 30%

federal tax rate, and 8% state tax rate. A 30-year project lifetime

is considered in this analysis. Even considering only these initial

parameters, it becomes clear how many assumptions go into such

a calculation.
Fig. 1 Time series forecasted probability distributions of solar insola-

tion in (a) Boston, (b) Chicago, and (c) Sacramento.

This journal is ª The Royal Society of Chemistry 2011
Solar insolation

As the modeled PV system will be operating beginning today, we

use the time series method to forecast the annual solar insolation

in the coming 30 years based on the historical monthly solar

insolation data (1960–1990) of the three cities. As the annual solar

insolation is nonseasonal, we use four time series methods (single

moving average, double moving average, single exponential

smooth, and double exponential smooth) for the data set of each

city and select the one with the best forecast as defined by the one

having the minimum mean square error with respect to the

historical data. It turns out that the single moving average

provides the best forecast for Boston and Sacramento, whereas

a single exponential smooth works best for the forecast of Chi-

cago. The initial forecasted annual solar insolations of the three

cities are presented in Fig. 1. The projections are assumed to

follow a normal distribution, which is actually somewhat broader

than the historical data due to the small historical sample size. As

one looks further into the future with the forecast, the outyears

trend toward greater uncertainty, as would be expected.

Power conversion efficiency

The power conversion efficiency can be affected by many factors.

In this analysis, we assume it follows a normal distribution with

a mean of 16% and a standard deviation of 1% (see Fig. 2). This

mean value, which is lower than the nameplate rating of the

modeled modules themselves, reflects losses in the inverter.

Most analyses of LCOE treat conversion efficiency as

a constant using the value reported by the module vendor using

standard conditions of illumination and temperature. In reality,

this value only provides an approximation of the actual perfor-

mance in the real world. Overall efficiency actually has many

parameters rolled up in it. For example, not only will a PV panel

produce less power when there is less sunlight, in many cases it

will also do so either more or less efficiently depending on the

module technology. Moreover, the dependence of efficiency on

insolation is not necessarily linear. Ideally, one would use real

illumination-dependent performance data time synched with

forecasted insolation. Other factors can also affect actual effi-

ciency such as temperature, partial shadowing from clouds or

debris, and so on. Using a distribution of values takes a step

toward capturing these uncertainties, though even greater accu-

racy is surely achievable.

System degradation rate

The rate at which solar cell performance degrades may depend

on the type of solar cell, quality of manufacturing, power
Fig. 2 Probability distribution of power conversion efficiency used for

the PV system in this model.

Energy Environ. Sci.
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Fig. 3 Probability distribution of system degradation rate used in this

model.

Fig. 4 Probability distribution of the real discount rate used in this

model.

Fig. 5 Probability distribution of O&M costs used in this model.
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production level, and local weather/climate. Inverter failure is

also highly dependent on the specific equipment used and the

ambient conditions, but we fold inverter replacement into the

maintenance costs discussed later. As with the previous param-

eters, system degradation rate is generally treated as a single

value in LCOE calculations despite the fact that it is known that

even within a single PV installation individual panels will

degrade with substantially different rates. In this analysis, we

assume the system degradation rate has the probability distri-

bution shown in Fig. 3, which accounts for a small number of

unusually poor performers as is often observed in real systems.

This is a gamma distribution with a scale parameter of 0.6% and

a shape parameter of 2, selected to bear qualitative resemblance

to real-world systems.8

Other production assumptions

In this analysis, we are making a number of additional

assumptions regarding electricity production. (Note that grid

integration costs are yet another factor that can be incorporated

into an LCOE calculation, and that distributed power systems

will have a markedly different behavior than centralized

systems.) A few of these include (1) the fact that conversion

efficiency and solar insolation are independent parameters (not

actually the case) and (2) weather patterns over the past 30 years

provide a reasonable foundation for forecasting sunlight over the

next 30 years.

Assumptions associated with costs

The two core pieces of an LCOE calculation are energy

production and cost. There are fundamental assumptions asso-

ciated with each of these,9 and below we outline some of the

considerations that enter into the costs. Again, we will use input

distributions to quantitatively capture the uncertainties associ-

ated with some of these assumptions.

Real discount rate

In addition to risks associated with solar insolation levels and the

performance of PV technologies at a specific location, there is

also financial uncertainty in terms of the time value of money. On

the down-side, generally speaking, borrowing money now is

disadvantageous if one locks into an interest rate that in the

future falls precipitously relative to inflation. On the other hand,

if future lending rates increase significantly faster than inflation,

the apparent cost of borrowing may be significantly less
Energy Environ. Sci.
expensive than anticipated at the time of the load. This uncer-

tainty is characterized in Fig. 4. The shape of the curve is based

on projections made by the Financial Forecast Center

(http://www.forecasts.org/ffund.htm) for the Fed Funds interest

rate. The general shape was then scaled such that the most

probable real discount rate reflects current rates for borrowing

money for constructing new PV projects. In the LCOE calcula-

tion described below, the real discount rate is converted to

a nominal discount rate using the assumed inflation factor.
Operations and maintenance

Upkeep of a utility-scale PV system will vary widely depending

on the local conditions. For example, in dusty regions or regions

with substantial snowfall, panels will have to be cleaned more

frequently. (Catastrophic weather events are accommodated in

insurance costs.) Inverter replacement requirements will also be

highly dependent on the location and the specific technologies

used. This cost can shift from year to year depending on the

weather and other factors. We assume that fixed O&M costs may

vary from $8/kW/yr to $20/kW/yr, with the most likely case being

approximately $10/kW/year. Therefore, here we assign a trian-

gular distribution to this parameter, as depicted in Fig. 5.

Assuming a system with microinverters in which failed inverters

are rapidly replaced supports the inclusion of this factor as an

O&M factor rather than an energy production issue. Other

common O&M costs are data acquisition systems and AC

disconnects. Lacking good local data, this distribution is used for

all three modeled locations, though it will certainly vary for

different environments.
Carbon market or tax

Emissions trading (‘‘cap and trade’’) is an approach to control-

ling pollution via economic incentives. Market forces are enlisted
This journal is ª The Royal Society of Chemistry 2011
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to achieve reductions of carbon emissions by capping the total

permissible amount, allocating carbon credits to firms, and

enabling the trading of permits. The European Union has put

a greenhouse gas trading scheme into place. A carbon tax is an

alternative market-based approach that directly taxes emissions

and thereby provides an incentive to reduce pollution. As neither

system has yet been implemented in the United States, we have

not included them into our calculation, but these systems can

have a dramatic effect on comparative financial LCOE by either

raising the cost of competing technologies based on fossil fuels or

by adding value to renewable energy production. Furthermore,

incorporating carbon taxes or emission trading will introduce yet

another uncertainty that must be properly accounted.
Tax rates and subsidies

As with inputs such as solar insolation, taxes and incentives for

promoting solar energy also vary widely by location. In our

model we have used a consistent federal tax rate of 30% and state

tax rate of 8%. Future policy changes regarding solar subsidies is

yet another uncertainty that is not quantified in this paper.

However, it can greatly influence project financial viability. For

the United States, there is a valuable online database that

compiles the various state, local, utility, and federal incentives

and policies.10
Fig. 6 LCOE output distributions for (a) Boston, (b) Chicago, and (c)

Sacramento simulated using the input parameter distributions outlined in

Fig. 1–5. The darker shaded area represents one standard deviation.
Analysis of the influence of assumptions

As any solar LCOE calculation must be performed for a specific

location due to local conditions, we selected three geographically

dispersed locations in the United States: Sacramento, CA, Chi-

cago, IL, and Boston, MA. While there are other factors that

vary between locations, we have taken the assumption that only

solar insolation will be different between these three cities. Surely

this overlooks important factors such a increased module

degradation in regions with greater temperature and humidity

fluctuations, different O&M costs (e.g., snowfall amounts in

Chicago and Boston as compared to Sacramento) and non-

linearities between insolation and conversion efficiency. Time

series forecasting using three decades of historical insolation at

these locations provides an estimation of the expected sunlight

conditions over the lifetime of the modeled PV system.

To calculate the LCOE for each of these locations (using eqn

(3)), we have used the parameter probability distributions out-

lined above in a Monte Carlo simulation. This approach

provides a more complete projection of the expected LCOE than

can be offered by a simple calculation using singular inputs.

Similar approaches have been applied to fossil fuel and nuclear

power plants,11 but to our knowledge this is the first application

to utility-scale PV. Rather, PV LCOE calculations generally rely

on singular inputs followed by single-parameter sensitivity

analysis.12

Monte Carlo simulation is a computational mathematical

technique that allows one to account for risk in quantitative

analysis and decision making. Monte Carlo simulation performs

uncertainty analysis by building models of possible results

through the substitution of a range of values—a probability

distribution—for any factor that has inherent uncertainty. By

using probability distributions, variables can have different
This journal is ª The Royal Society of Chemistry 2011
probabilities of different outcomes occurring. Probability

distributions are an informative method for describing uncer-

tainty. During a Monte Carlo simulation, values are sampled at

random from the input probability distributions. Each set of

samples is called an iteration, and the resulting outcome from

that sample is recorded. Depending upon the number of uncer-

tainties and the ranges specified for them, a Monte Carlo simu-

lation could involve thousands or millions of iterations. The

resulting range of all calculation results form a distribution from

which uncertainty information can be derived with basic statis-

tical methods. In this way, Monte Carlo simulation provides

a much more comprehensive view of what may happen. It tells

you not only what could happen, but also how likely it is to happen.

Monte Carlo simulation provides a number of advantages

over deterministic, or ‘‘single-point estimate’’ analysis:

1. Probabilistic results: Results show not only what could

happen, but also how likely each outcome is.

2. Sensitivity analysis: With just a few cases, deterministic

analysis makes it difficult to see which variables impact the

outcome the most. In Monte Carlo simulation, it is easy to see

which inputs had the biggest effect on bottom-line results.

3. Correlation of inputs. In Monte Carlo simulation, it is

possible to model interdependent relationships between input

variables. It is important for accuracy to represent how, in

reality, when some factors goes up, others go up or down

accordingly. (Here we have assumed independent inputs for

simplicity.)

In this work, we use 1,000,000 iterations for the uncertainty

analysis of LCOE for each of the three cities. The Monte Carlo

simulations produce not only the probability distribution of the

LCOE, but also sensitivity charts and correlation charts.
Energy Environ. Sci.
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Table 1 Statistics from LCOE output calculations (all units are ¢/kWh)

Parameter Boston Chicago Sacramento

Mean 9.3 9.7 6.9
Median 9.1 9.4 6.7
Std Dev 2.7 2.8 2.0
Variance 7.1 7.8 3.8

Fig. 7 Rank correlation sensitivity analyses for (a) Boston, (b) Chicago,

and (c) Sacramento obtained by varying inputs according to defined

probability distributions.
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Fig. 6 shows the LCOE output distributions for each of the

three locations, and Table 1 includes relevant numbers from

these output statistics. Note that these outputs are based on the

relatively rudimentary input distributions and assumptions out-

lined above and are presented here simply as a demonstration of

the methodology. It is striking how broad these distributions are,

which emphasizes the shortcomings of calculations that use

singular input parameters.

It is no surprise that the LCOE for the system in comparatively

sunny Sacramento is centered around a lower value (6.9 ¢/kWh)

than that in Chicago or Boston (9.7 and 9.3 ¢/kWh, respectively),

but these mean values only provide part of the overall picture.

For example, there is also a marked difference in the standard

deviation among these locations. In this simple model, these

differences arise solely from the different insolation distributions

as the remaining inputs are treated as being independent of

location. That is, the predicted LCOE result is known with better

certainty for Sacramento. This sort of information is of

tremendous potential value to investors, utility companies,

insurers, and other stakeholders who need to ascertain the risk

associated with a new installation.

Additional information can be gleaned from an examination

of the sensitivity of the LCOE to the various input parameters.

There are myriad ways in which one can begin deciphering these

relative influences; here we report the results of a sensitivity

analysis in which the inputs were varied according to their

defined probability distributions rather than, for example, arti-

ficially shifting specific parameters by a set percentage. Fig. 7

shows the rank correlation analysis results for each location,

which quantify the agreement between each input parameter and

the LCOE output on a scale of �1 to +1. A negative correlation

means a lower value for the input parameter tends to result in

a higher value for the LCOE, and a positive correlation means

a higher value for the input parameter tends to result in a higher

LCOE. The magnitude of the correlation indicates how strong

this relationship is across the numerous simulated cases.

Clearly, adjustments to the input parameter distributions will

have a direct effect on the LCOE and sensitivity results, but

taking the distributions proposed here, there are some surprising

findings that emerge. For one, the financial uncertainties repre-

sent by far the biggest correlation with LCOE. For example,

a higher real discount rate almost always resulted in a higher

LCOE. As with most of the inputs, the actual financial values for

a given real-world project are essentially out of one’s control;

however, knowing that this factor is a major contributor to risk,

this is an area where stakeholders such as governments interested

in facilitating the utilization of solar energy can step in to provide

greater certainty through creative approaches that lessen the

impact of overall capital markets.

System performance, represented by conversion efficiency and

system degradation, is also a significant contributor to the
Energy Environ. Sci.
uncertainty in LCOE. One cannot simply use a vendor-supplied

power conversion efficiency when predicting the lifetime

production for a system. As real-world performance databases

become deeper (note that these data must be obtained from the

specific location of interest to be truly relevant), they will provide

an invaluable resource for developing reliable input distribu-

tions.

Uncertainties in system degradation rate can be minimized as

manufacturers improve their processes to eliminate the number

of modules that fail prematurely. Developments in this direction

will have a direct impact on the projected uncertainty and will

therefore reduce risk for photovoltaic projects.

Interestingly, despite the substantial variation in solar insola-

tion seen both historically and in the time series forecasts pre-

sented in Fig. 1, insolation appears to have a relatively small

correlation with LCOE when compared with the discount rate

and performance inputs. Variation should not be ignored, but

this analysis implies that one may focus more on the uncertainty

revolving around other factors when estimating LCOE distri-

butions. That said, the fact that insolation and conversion effi-

ciency are actually coupled can introduce unforeseen complexity

to this situation.
Conclusions

We are venturing into the era of renewable energy, and photo-

voltaics will represent an increasing share of this sector. Count-

less decisions associated with solar energy technologies rely on

financial calculations, ranging from investors to regulators to

technologists, yet the established method of comparing costs

between electricity-generating technologies—LCOE—is being

misused in virtually all cases in the context of photovoltaics.
This journal is ª The Royal Society of Chemistry 2011
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There are many assumptions that underlie an LCOE calculation,

and anyone performing such a calculation or utilizing the results

must fully appreciate the influence of these assumptions.

It is inadvisable to input single numbers into the calculation

and receive a single LCOE number as a result. This carries with it

an unfounded and potentially misleading sense of certainty.

Rather, input parameter distributions based on the best available

data should be employed, resulting in a LCOE distribution that

far more accurately reflects cost uncertainty associated with

a solar project.

Here we have used Monte Carlo simulations to produce such

a distribution, and we have focused on assumptions revolving

around (decoupled) sunlight variation, panel performance,

operating costs, and inflation. The distributions used here are

relatively crude approximations with no interdependence used

to demonstrate the Monte Carlo approach to LCOE. Even

within this limited scope, it is clear that the LCOE output can

vary substantially from a single value, giving enhanced guid-

ance to all stakeholders in the solar energy arena. Users

adopting this approach will require more rigorous and coupled

input distributions based on the best available geography-

specific data, which is many cases is not currently available.

Responsibility for collecting and distributing these data lies

with partnerships between industry and national laboratories.

With such data in hand, the Monte Carlo approach presented

here is a means to generate reliable statistical projections for

PV LCOE.
This journal is ª The Royal Society of Chemistry 2011
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